原料中のアルミ形態が クリンカー鉱物生成プロセスと セメント物性に及ぼす影響

住友大阪セメント株式会社 〇佐藤友樹 中田裕伸 清水準

目的

- セメント業界様々な廃棄物・副産物→ 原料化・燃料化
- 粘土代替(AI成分 多)スラグ(鉱滓)石炭灰建設発生土→「アルミナ原料」

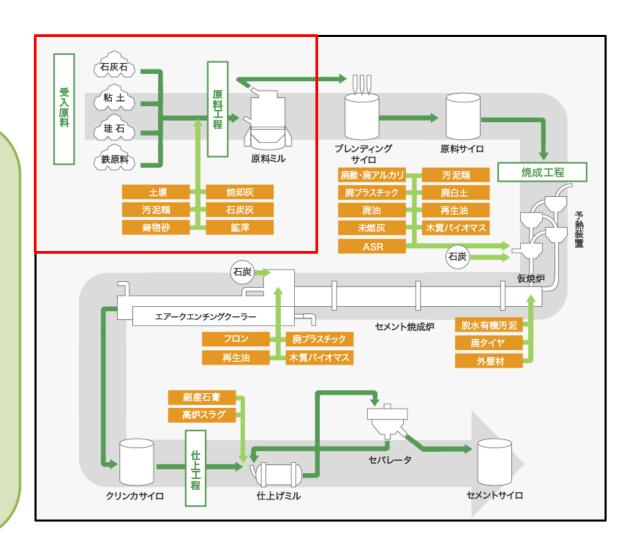


図1 セメント製造における廃棄物・副産物の利用 (住友大阪セメント(株) HP,「廃棄物・副産物のリサイクルフロー」 https://www.soc.co.jp/service/cement/recycle/recyclingflow/)

目的

- 4種のアルミナ原料Al含有形態が異なる
 - → 焼成時の融液生成や C₃A生成に影響
 - → 生成プロセスのその場観察 セメント物性評価

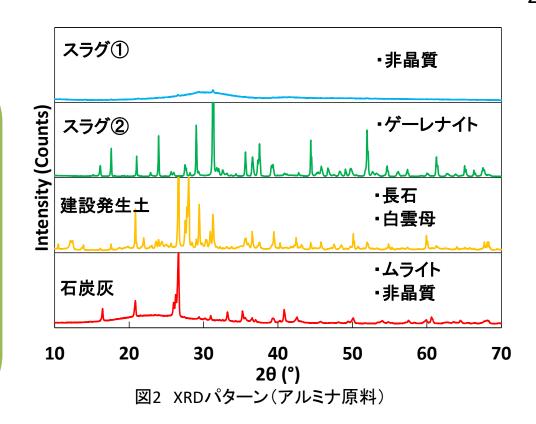


表1 化学成分(アルミナ原料)

	原料化学成分(%)												
	Igloss	SiO ₂	Al_2O_3	Fe_2O_3	CaO	MgO	SO_3	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Total
スラグ①	2.6	32.6	14.0	0.5	40.9	6.2	0.3	0.3	0.3	0.8	0.0	0.2	98.6
スラグ②	0.5	35.1	13.4	0.4	41.3	6.1	0.2	0.3	0.3	0.7	0.0	0.3	98.5
建設発生土	7.5	40.0	17.4	5.1	13.0	6.8	0.1	1.3	0.8	0.6	0.1	0.2	92.7
石炭灰	6.2	56.7	22.7	5.1	3.4	1.4	0.3	0.3	1.2	1.4	0.3	0.0	99.0

0.3

9.1

実験方法

目標値(調合原料) 表2

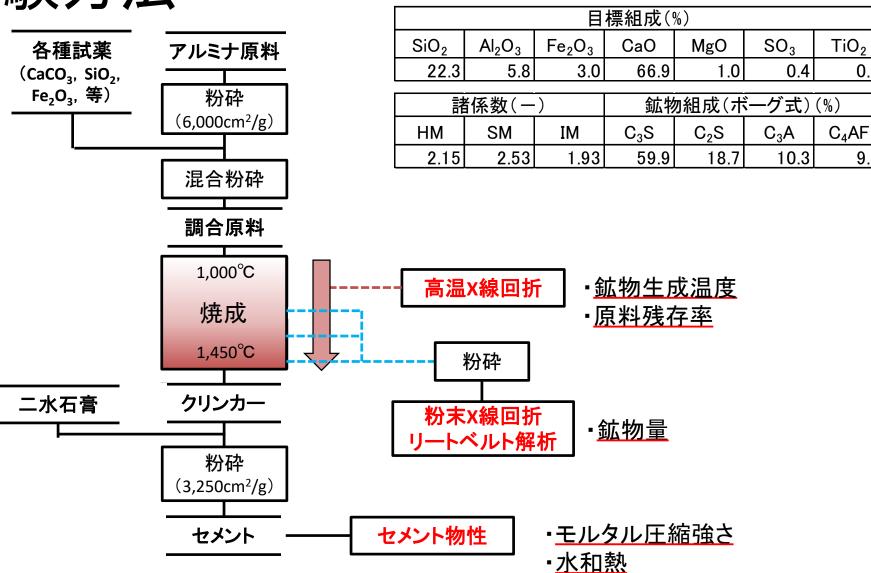
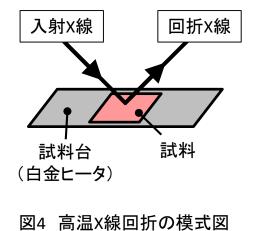



図3 試験フロー

評価方法

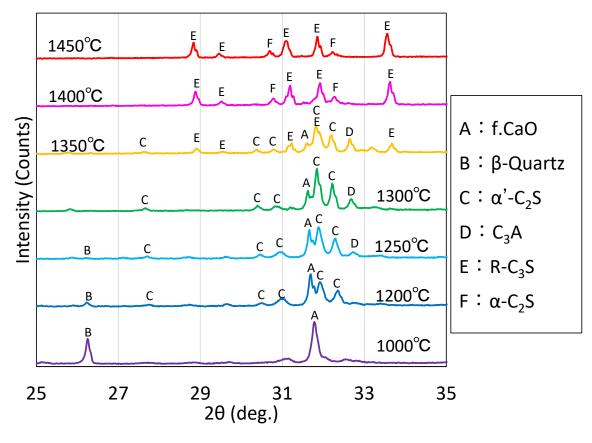

実験項目	実験方法(装置・規格)	
高温X線回折	X線回折装置: Spectris社製 X`Pert PRO MPD 高温アタッチメント: Anton Paar社製 HTK-16N	・ターゲット: CuKα, 管電圧: 45kV, 管電流: 40mA, ステップ幅: 0.017° ・温度条件: 下表
X線回折/ リートベルト解析	X線回折装置: Bruker社製 D8 ADVANCE 解析ソフト: Bruker社製 TOPAS	・ターゲット: CuKα, 管電圧: 40kV, 管電流: 40mA, ステップ幅: 0.025°
モルタル圧縮強さ	JIS R5201に準拠	・セメント: 3,250±50cm2/g
水和熱	JIS R5203に準拠	・二水石膏: セメント中のSO ₃ が2.0%となるよう 添加

表3 高温X線回折温度条件

測定温度	1000, 1200, 1250, 1300,						
	1350, 1400, 1450°C, 冷却後						
保持時間	min						
測定時間	10 min						
昇温速度	RT~1000°C: 100°C/min,						
升皿还反	1000~1450°C:60°C/min						
雰囲気	空気						

結果:高温X線回折

- 原料: f.CaO, β-石英→減少
- クリンカー鉱物→生成・相転移

図5 高温X線回折パターン(アルミナ原料:石炭灰)

結果:高温X線回折(原料残存率)

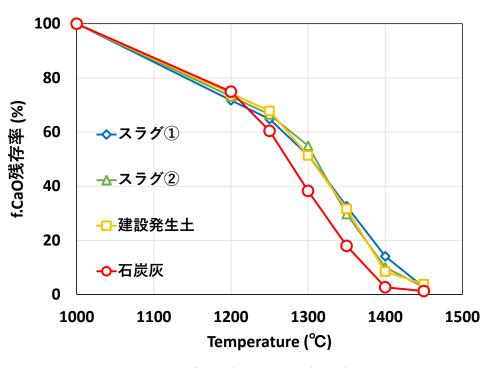


図6 各温度のf.CaO残存率

- f.CaO相対強度=f.CaO残存率
- →石炭灰使用時 f.CaOが最も減少
- →石炭灰がSiO₂多 調合時のシリカ(石英)少
 - =焼成反応性向上

表1 化学成分(アルミナ原料)

	原料化学成分(%)												
	Igloss	SiO ₂	Al_2O_3	Fe_2O_3	CaO	MgO	SO_3	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Total
スラグ①	2.6	32.6	14.0	0.5	40.9	6.2	0.3	0.3	0.3	0.8	0.0	0.2	98.6
スラグ②	0.5	35.1	13.4	0.4	41.3	6.1	0.2	0.3	0.3	0.7	0.0	0.3	98.5
建設発生土	7.5	40.0	17.4	5.1	13.0	6.8	0.1	1.3	0.8	0.6	0.1	0.2	92.7
石炭灰	6.2	56.7	22.7	5.1	3.4	1.4	0.3	0.3	1.2	1.4	0.3	0.0	99.0

結果:高温X線回折 (C_3A)

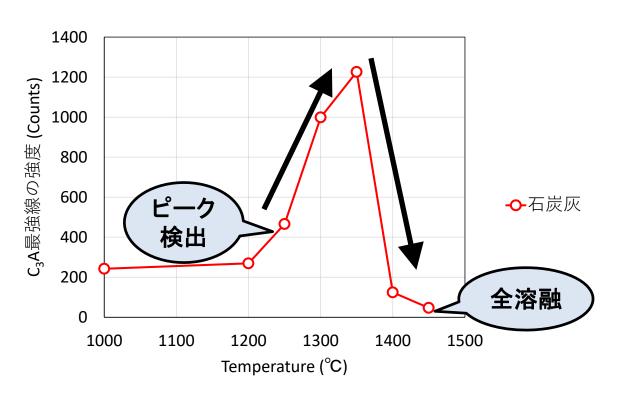
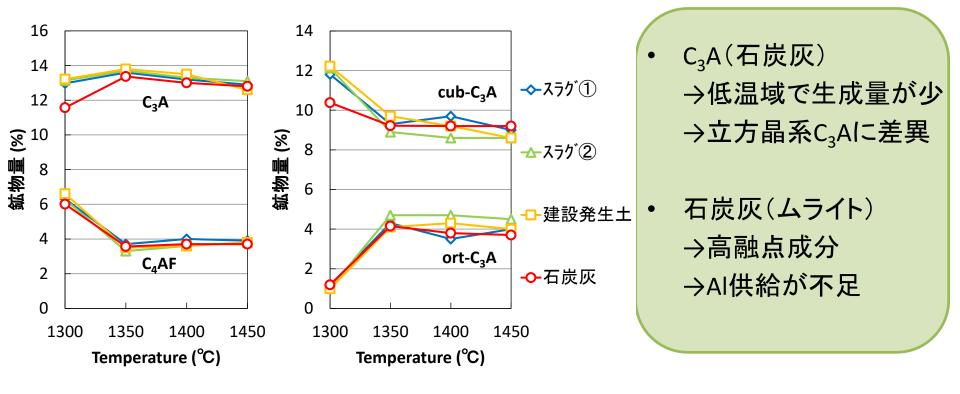
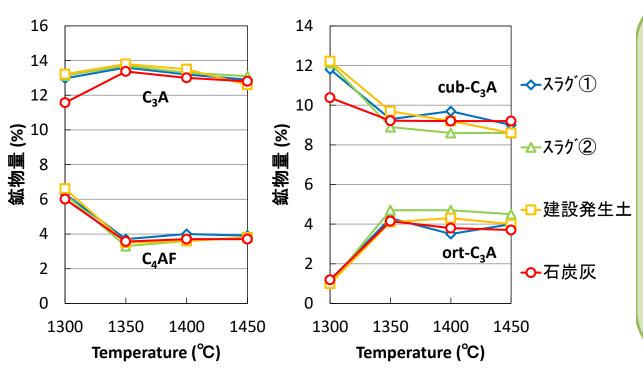



図7 各温度のC₃A最強線の強度

- C₃A
 1000°C
 →1250°C C₃A生成
 →1350°C C₃A増加
- →1450°C C₃A溶融
- アルミナ原料によらず 温度は同じ


結果:粉末X線回折/リートベルト解析

各温度のC₃A生成量

各温度の間隙相生成量

結果:粉末X線回折/リートベルト解析

- →アルカリ含有により 斜方晶系C₃Aが安定

各温度の間隙相生成量

各温度のC。A生成量

- 1,350℃以上:融液生成 →間隙相量 同じ
 - →斜方晶系C₃Aが増加
- 融液生成

*結果:セメント物性 | 素4 鉱物組成(1,450°C, 1h)

		鉱物組成(%)						
	C ₃ S	C_2S	C_3A	C ₄ AF				
スラグ①	61.4	20.3	12.9	3.9				
スラグ②	60.8	20.8	13.1	3.8				
建設発生土	61.5	20.5	12.6	3.8				
石炭灰	61.4	20.4	12.8	3.7				

80		450] /
m²)	■ 3d ■ 7d ■ 28d	■ 7d ■ 28d	
m/N) や		(1/g)	
モルタル圧縮強さ (N/mm²) 8 8		350	
モルタ ₅			
20		300	
	図10 モルタル圧縮強さ	図11 水和熱	`

- モルタル圧縮強さ
 - =同等

水和熱

- =同等
- 異なるアルミナ原料 (同一の化学組成, 1450℃, 1時間保持)
 →概ね同一の物性を 持つクリンカー

結言

マルミ十戸松	f.C	aO	C ₃	₃ A	C ₃ A生成量		
│ アルミナ原料 │	低温域	1450°C	生成	融解	低温域	1450°C	
スラグ①							
スラグ②	多い	土长山	4250°C	1250°C	多い	日生	
建設発生土		未検出	1250°C	1350°C ~		同等	
石炭灰	少ない				少ない		

- 原料中のAI成分の含有形態が異なると昇温過程でのクリンカー生成状況に一部違いが認められた。
- 本研究の組成では、1450℃まで昇温すればC₃Aは全て融液となり、冷却後に得られたクリンカーを用いたセメントのモルタル圧縮強さおよび水和熱といった物性は概ね同一となった。従って、一般的にセメント工場で焼成される条件においても、得られるセメント物性の差は小さい。